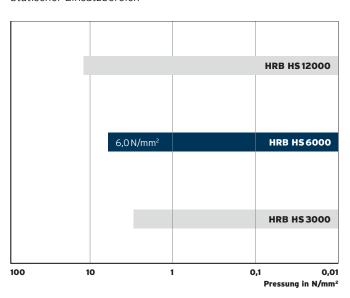
SYLODYN® **HRB HS 6000**

DATENBLATT

Produkteigenschaften


Werkstoff	geschlossenzelliges PUR-Elastomer (Polyurethan)	
Farbe	dunkelblau	
Standard-Lieferform	Dicke: 12,5 mm / 25 mm	
	Platte: 1,2 m breit, 1,5 m lang	

Andere Abmessungen sowie Stanzteile auf Anfrage.

Einsatzbereich	Druckbelastung	Verformung
	formfaktorabhängig, die angegebenen Werte gelten für Formfaktor 3	
Statischer Einsatzbereich (statische Lasten)	bis 6,0 N/mm²	ca. 12 %
Dynamischer Einsatzbereich (statische und dynamische Lasten)	bis 9,0 N/mm²	ca. 15 %
Lastspitzen (seltene, kurzzeitige Lasten)	bis 18,0 N/mm ²	ca. 25 %

Sylodyn_® HRB HS Typenübersicht

Statischer Einsatzbereich

Werkstoffeigenschaften		Prüfverfahren	Anmerkungen
Mechanischer Verlustfaktor	0,07	DIN 535131	temperatur-, frequenz-, pressungs- und amplitudenabhängig
Druckverformungsrest ²	<5%	EN ISO 1856	25 % Verformung, 23 °C, 72 h, 30 min nach Entlastung
Statischer Schubmodul ³	3,5 N/mm²	DIN ISO 18271	bei einer Vorspannung von 6,0 N/mm²
Dynamischer Schubmodul ³	4,2 N/mm²	DIN ISO 18271	bei einer Vorspannung von 6,0 N/mm², 10 Hz
Reibungskoeffizient (Stahl)	0,6	EN ISO 82951	trocken, Haftreibung
Reibungskoeffizient (Beton)	0,7	EN ISO 82951	trocken, Haftreibung
Wärmeleitfähigkeit	0,17 W/(mK)	DIN EN 12664	
Einsatztemperatur	-30 °C bis 70 °C		kurzzeitig höhere Temperaturen möglich
Brandverhalten	Klasse E	EN ISO 11925-2	normal entflammbar, EN 13501-1

³ Werte gelten für Formfaktor 3

¹ Messung/Auswertung in Anlehnung an die jeweilige Norm ² Die Messung erfolgt dichteabhängig mit variierenden Prüfparametern

Federkennlinie

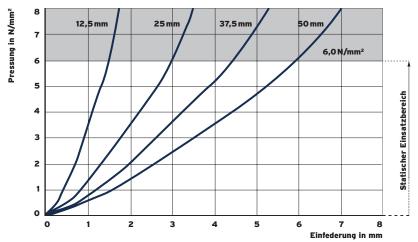


Abb. 1: Quasistatische Federkennlinie für verschiedene Lagerdicken

Quasistatische Federkennlinie mit einer Belastungsgeschwindigkeit von 0,6 N/mm²/s.

Prüfung zwischen sandgestrahlten, ebenen und planparallelen Stahlplatten, Aufzeichnung der 3. Belastung mit linearisiertem Startbereich nach ISO 844, Prüfung bei Raumtemperatur.

Formfaktor 3

Elastizitätsmodul

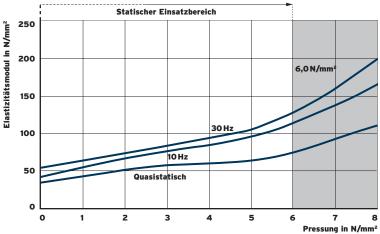


Abb. 2: Belastungsabhängigkeit des statischen und dynamischen Elastizitätsmoduls

Quasistatischer Elastizitätsmodul als Tangentenmodul aus der Federkennlinie. Dynamischer Elastizitätsmodul aus sinusförmiger Anregung mit einer Schwingschnelle von $100\,\mathrm{dB_v}$ re. $5\cdot10^{-8}\,\mathrm{m/s}$ (entsprechend einer Schwingweite von 0,22 mm bei $10\,\mathrm{Hz}$ und 0,08 mm bei $30\,\mathrm{Hz}$).

Messung in Anlehnung an DIN 53513

Parameter: Frequenz

Formfaktor 3

Eigenfrequenzen

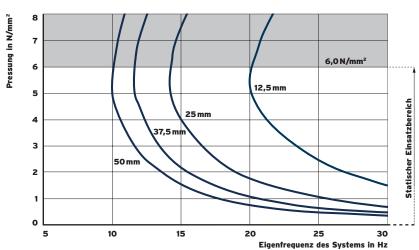


Abb. 3: Eigenfrequenzen für verschiedene Lagerdicken

Eigenfrequenzen eines schwingungsfähigen Systems mit einem Freiheitsgrad, bestehend aus einer starren Masse und einem elastischen Lager Sylodyn® HRB HS 6000 auf starrem Untergrund.

Parameter: Dicke des Sylodyn_®-Lagers

Formfaktor 3

Statisches Dauerstandverhalten

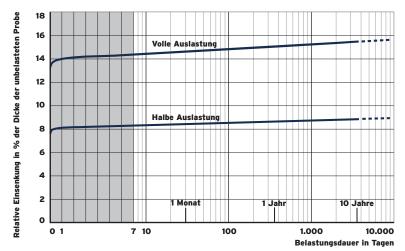


Abb. 4: Verformung unter statischer Belastung in Abhängigkeit der Zeit

Verformungszunahme unter gleich bleibender Druckbelastung.

Parameter: Ständige Pressung

Formfaktor 3

Amplitudenabhängigkeit

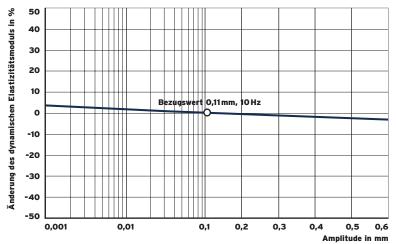
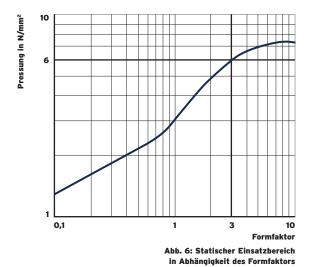


Abb. 5: Dynamischer Elastizitätsmodul in Abhängigkeit der Schwingungsamplitude


Abhängigkeit des dynamischen Elastizitätsmoduls von der Schwingungsamplitude.

Sylodyn_® HRB HS 6000 weist eine vernachlässigbare Amplitudenabhängigkeit auf.

Einfluss des Formfaktors

Die Diagramme geben Werkstoffeigenschaften bei unterschiedlichen Formfaktoren an.

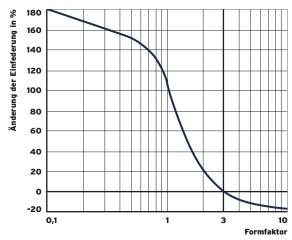


Abb. 7: Einfederung 4 bei gleichbleibender Dicke in Abhängigkeit des Formfaktors

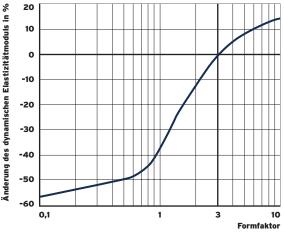


Abb. 8: Dynamischer Elastizitätsmodul⁴ bei 10 Hz in Abhängigkeit des Formfaktors

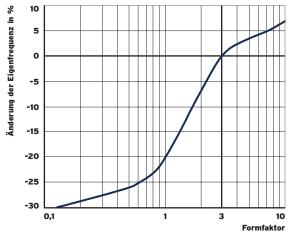


Abb. 9: Eigenfrequenz 4 bei gleichbleibender Dicke in Abhängigkeit des Formfaktors

Alle Angaben und Daten beruhen auf unserem derzeitigen Wissensstand. Sie können als Rechenbzw. Richtwerte herangezogen werden, unterliegen produkt- und anwendungsspezifischen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Die Werkstoffeigenschaften und deren Toleranzen variieren je nach Art der Anwendung und Beanspruchung und sind auf Anfrage bei Getzner erhältlich. Änderungen vorbehalten.

Weitere allgemeine Informationen siehe VDI Richtlinie 2062 sowie Glossar. Weitere Kennwerte auf Anfrage.

 $^{^4}$ Referenzwerte: Pressung 6,0 N/mm 2 , Formfaktor 3