



Matériau élastomère PUR à structure

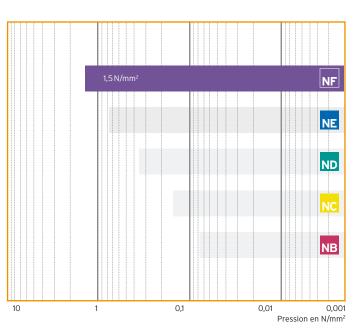
cellulaire fermée (polyuréthane)

Couleur violet

#### **Conditionnement standard**

Épaisseur: 12,5 mm/25 mm

Rouleau: 1,5 m de large, 5,0 m de long


Bande: jusqu'à 1,5 m de large, jusqu'à 5,0 m de long

Autres dimensions et pièces découpées et façonnées sur demande.

| Domaine d'application                                                     | Charge de Déformation compression                                                                      |           |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------|
|                                                                           | influence du facteur de forme ; les valeurs indi-<br>quées s'appliquent pour le facteur de forme q = 3 |           |
| Domaine d'application statique (charges statiques)                        | jusqu'à 1,50 N/mm²                                                                                     | env. 11 % |
| Domaine d'application dyna-<br>mique<br>(charges statiques et dynamiques) | jusqu'à 2,00 N/mm²                                                                                     | env. 16 % |
| Surcharges maximum<br>(charges rares, de courte durée)                    | jusqu'à 6,8 N/mm²                                                                                      | env. 30 % |

### Série Sylodyn®

Domaine d'application statique



| Propriétés du matériau                              |                         | Méthodes d'essai         | Remarque                                                                            |
|-----------------------------------------------------|-------------------------|--------------------------|-------------------------------------------------------------------------------------|
| Facteur de perte mécanique                          | 0,09                    | DIN 535131               | en fonction de la température, de la fréquence, de la pression<br>et de l'amplitude |
| Élasticité au rebond                                | 70 %                    | EN ISO 83071             |                                                                                     |
| Résistance à la compression³                        | 1,34 N/mm <sup>2</sup>  | EN ISO 8441              | pour un écrasement de 10 %, 3º cycle de charge                                      |
| Déformation rémanente à la compression <sup>2</sup> | <5%                     | EN ISO 1856 <sup>1</sup> | déformation de 25 %, à 23 °C, 72 h, 30 min. après relâchement<br>de la charge       |
| Module d'élasticité statique³                       | 11,99 N/mm <sup>2</sup> |                          | pour une pression de 1,50 N/mm²                                                     |
| Module d'élasticité dynamique³                      | 14,94 N/mm <sup>2</sup> | DIN 535131               | pour une pression de 1,50 N/mm², 10 Hz                                              |
| Module au cisaillement statique                     | 0,99 N/mm <sup>2</sup>  | DIN ISO 18271            | pour une précontrainte de 1,50 N/mm²                                                |
| Module au cisaillement dynamique                    | 1,48 N/mm <sup>2</sup>  | DIN ISO 18271            | pour une précontrainte de 1,50 N/mm², 10 Hz                                         |
| Tension min. de rupture                             | 5,00 N/mm <sup>2</sup>  | EN ISO 527-3/5/5001      |                                                                                     |
| Allongement min. à la rupture                       | 300%                    | EN ISO 527-3/5/5001      |                                                                                     |
| Abrasion <sup>2</sup>                               | $\leq$ 200 mm $^3$      | DIN ISO 46491            | charge 10 N                                                                         |
| Coefficient de frottement (acier)                   | 0,7                     | EN ISO 82951             | à sec, adhérence                                                                    |
| Coefficient de frottement (béton)                   | 0,7                     | EN ISO 82951             | à sec, adhérence                                                                    |
| Coefficient de frottement (bois)                    | 0,5                     | EN ISO 82951             | à sec, adhérence                                                                    |
| Résistance de contact spécifique                    | >10¹0 Ω·cm              | EN IEC 62631-3-11        | à sec                                                                               |
| Conductivité thermique                              | 0,15 W/(mK)             | EN 12667                 |                                                                                     |
| Température d'utilisation                           | de -30°C à 70°C         |                          | des températures plus élevées sont possibles sur une courte<br>durée                |
| Inflammabilité                                      | Classe E                | EN ISO 11925-2           | normalement inflammable, EN 13501-1                                                 |

<sup>&</sup>lt;sup>1</sup> Mesure/Évaluation conformément à la norme applicable

Toutes les informations et données s'appuient sur l'état actuel de nos connaissances. Elles peuvent être utilisées comme valeurs calculées ou en tant que valeurs indicatives. Elles sont soumises aux tolérances de fabrication spécifiques au produit et à son utilisation et ne constituent en aucun cas des propriétés garanties. Les propriétés du matériau et leurs tolérances varient en fonction de l'utilisation et de la sollicitation et sont disponibles sur demande auprès de Getzner. Sous réserve de modifications.

Pour plus d'informations générales, consultez la directive VDI 2062 ainsi que le glossaire. Autres spécifications techniques sur demande.



<sup>&</sup>lt;sup>2</sup> La mesure s'effectue en fonction de la densité avec des paramètres de contrôle variables

<sup>&</sup>lt;sup>3</sup> Valeur pour un facteur de forme q=3

# Sylodyn<sub>®</sub> **NF**

#### Courbe de déflexion

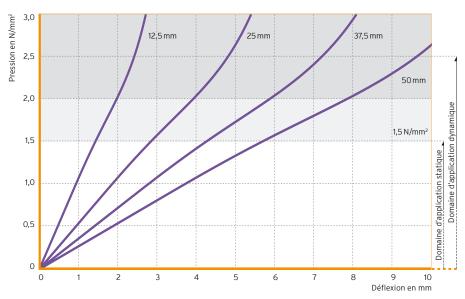



Fig. 1: Courbe de déflexion quasi-statique pour différentes épaisseurs d'appui

Courbe de déflexion quasistatique avec une vitesse de charge de 0,15 N/mm²/s.

Essai effectué entre des plaques d'acier planes et parallèles, enregistrement au bout de la 3° charge, avec plage de départ linéarisée selon ISO 844, essai à température ambiante.

Paramètre : Épaisseur de l'appui Sylodyn®

Facteur de forme q = 3

# Module d'élasticité

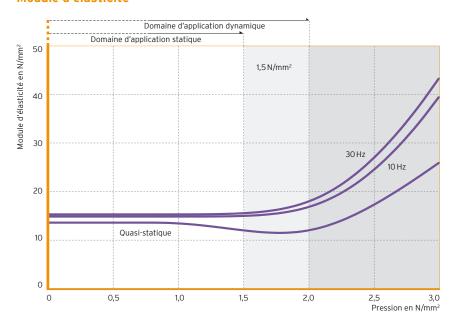



Fig. 2 : Influence de la charge sur les modules d'élasticité statiques et dynamiques

Le module d'élasticité quasi-statique est tangent à la courbe de déflexion. Le module d'élasticité dynamique est soumis à une excitation sinusoïdale à une vitesse vibratoire de  $100 \, \text{dBV}$  re.  $5 \cdot 10^{-8} \, \text{m/s}$  (en fonction d'une amplitude de vibration de  $0,22 \, \text{mm}$  pour  $10 \, \text{Hz}$  et de  $0,08 \, \text{mm}$  pour  $30 \, \text{Hz}$ ).

Mesure effectuée conformément à la norme DIN 53513

Paramètre: Fréquence

Facteur de forme q=3



## Fréquence propres

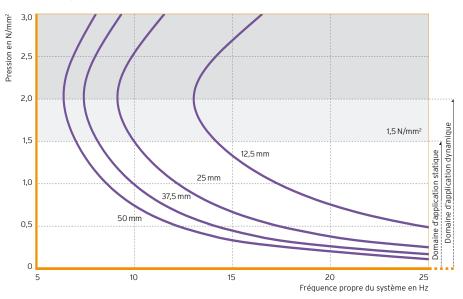



Fig. 3 : Fréquence propre pour différentes épaisseurs d'appui

Fréquences propres d'un système vibratoire à un degré de liberté, comprenant une masse rigide et un appui élastique en Sylodyn® NF sur structure rigide.

Paramètre : Épaisseur de l'appui Sylodyn®

Facteur de forme q = 3

# Isolation des vibrations

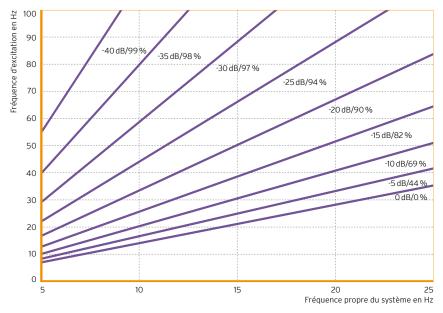



Fig. 4 : Coefficient de transmission et degré d'isolation

Réduction de la transmission des vibrations mécaniques par l'installation d'un appui élastique en Sylodyn® NF sur une structure rigide.

Paramètre : coefficient de transmission en dB, degré d'isolation en %



Facteur de forme

Facteur de forme

#### Influence du facteur de forme

Les diagrammes font état des propriétés du matériau selon différents facteurs de forme.

Modification de la déflexion

160%

120%

80%

40%

0%

-40%

-40%

du facteur de forme

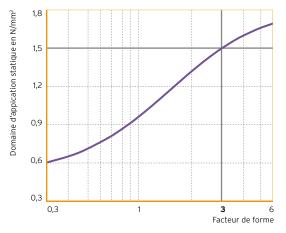



Fig. 5 : Domaine d'application statique en fonction du facteur de forme

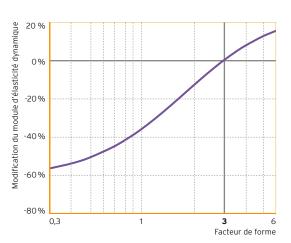



Fig. 7 : Module d'élasticité dynamique 4 pour 10 Hz en fonction du facteur de forme

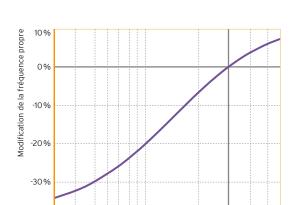



Fig. 6 : Déflexion⁴ à épaisseur constante en fonction

Fig. 8 : Fréquence propre 4 à épaisseur constante en fonction du facteur de forme

Les propriétés du matériau peuvent être déterminées grâce au programme de calcul en ligne FreqCalc. Accès via www.getzner.com, enregistrement requis.



 $<sup>^4</sup>$  Valeurs de référence : pression 1,5 N/mm $^2$ , facteur de forme q = 3