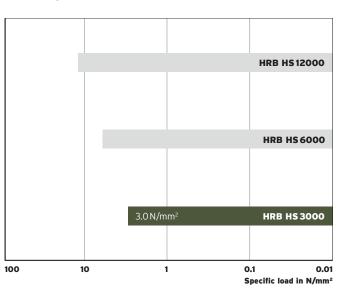
SYLODYN® **HRB HS 3000**

DATA SHEET

Product characteristics


Material	closed-cell PU elastomer (polyurethane)	
Colour	dark green	
Standard delivery dimension	Thickness: 12.5 mm/25 mm	
	Mat: 1.2 m wide, 1.5 m long	
	Mat: 1.2 m wide, 1.5 m long	

Other dimensions as well as punched parts on request.

Range of use	Compressive load	Deformation	
	shape factor-depen to shape factor 3	shape factor-dependent, values apply to shape factor 3	
Static range of use (static loads)	up to 3.0 N/mm²	approx. 12%	
Dynamic range of use (static plus dynamic loads)	up to 4.5 N/mm²	approx. 16 %	
Load peaks (occasional, brief loads)	up to 12.0 N/mm²	approx. 30 %	

Sylodyn_® HRB HS range

Static range of use

Material properties		Test methods	Comment
Mechanical loss factor	0.06	DIN 535131	temperature-, frequency-, specific load- and amplitude-dependent
Compression set ²	<5%	EN ISO 1856	25 % deformation, 23 °C, 72 h, 30 min after removal of load
Static shear modulus ³	2.4 N/mm ²	DIN ISO 18271	at a pretension of 3.0 N/mm²
Dynamic shear modulus ³	2.8 N/mm ²	DIN ISO 18271	at a pretension of 3.0 N/mm², 10 Hz
Coefficient of friction (steel)	0.6	EN ISO 82951	dry, static friction
Coefficient of friction (concrete)	0.7	EN ISO 82951	dry, static friction
Thermal conductivity	0.16 W/(mK)	DIN EN 12664	
Temperature range	-30°C to 70°C		short term higher temperatures possible
Flammability	class E	EN ISO 11925-2	normal combustible, EN 13501-1

 $^{\rm 3}$ Values apply to shape factor 3

¹ Measurement/evaluation in accordance with the relevant standard ² The measurement is performed on a density-dependent basis with differing test parameters

Load deflection curve

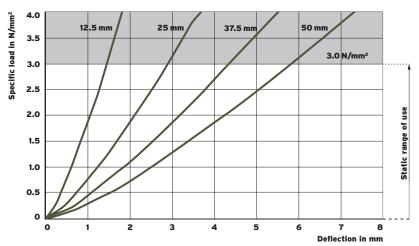


Fig. 1: Quasi-static load deflection curve for different bearing thicknesses

Quasi-static load deflection curve measured with a loading rate of 0.3 N/mm²/s.

Testing between sandblasted, flat steel-plates; recording of the 3rd load, with filtered starting range in accordance with ISO 844, testing at room temperature.

Shape factor 3

Modulus of elasticity

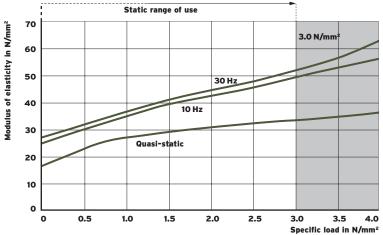


Fig. 2: Load dependency of the static and dynamic modulus of elasticity

Quasi-static modulus of elasticity as tangential modulus from the load deflection curve. Dynamic modulus of elasticity from sinusoidal excitation with a velocity level of $100\,\mathrm{dB_v}$ re. $5\cdot10^{-8}\,\mathrm{m/s}$ corresponding to a vibration amplitude of $0.22\,\mathrm{mm}$ at $10\,\mathrm{Hz}$ and $0.08\,\mathrm{mm}$ at $30\,\mathrm{Hz}$.

Measurement in accordance with DIN 5313

Parameter: frequency

Shape factor 3

Natural frequencies

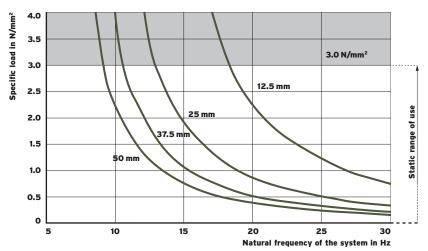


Fig. 3: Natural frequencies for different bearing thicknesses

Natural frequencies of a vibratory system with a single degree of freedome, consisting of a mass and an elastic bearing made of Sylodyn $_{\odot}$ HRB HS 3000 on a rigid surface.

Parameter: thickness of the Sylodyn® bearing

Shape factor 3

Static creep behaviour

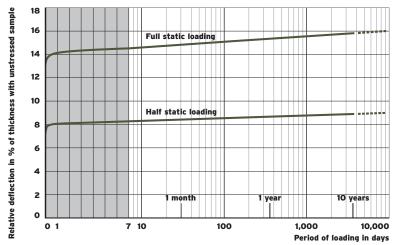


Fig. 4: Deformation under static load depending on time

Deformation under consistent loading.

Parameter: permanent static load

Shape factor 3

Dependency on amplitude

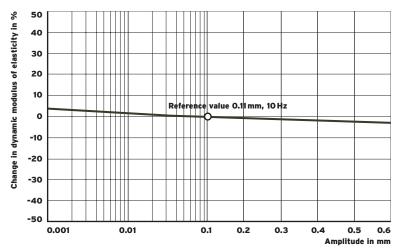


Fig. 5: Dynamic modulus of elasticity depending on the vibration amplitude $% \left(1\right) =\left(1\right) \left(1\right)$

Typical dependency of the dynamic modulus of elasticity on the amplitude of vibration.

Sylodyn_® HRB HS 3000 materials exhibit a negligible dependency of amplitude.

Influence of the shape factor

The graphs show the material properties at different shape factors.

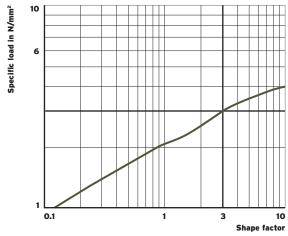


Fig. 6: Static range of use in relation to the shape factor

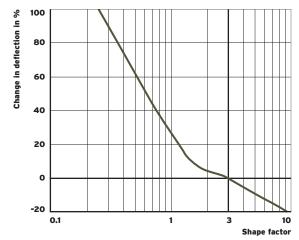


Fig. 7: Deflection 4 at constant thickness in relation to the shape factor

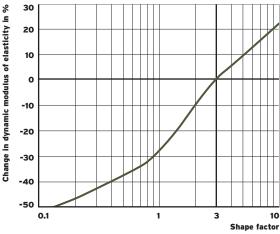


Fig. 8: Dynamic modulus of elasticity⁴ at 10 Hz in relation to the shape factor

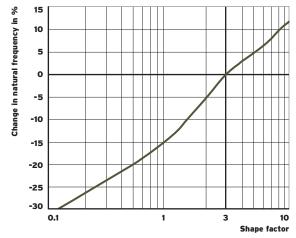


Fig. 9: Natural frequency 4 at constant thickness in relation to the shape factor

All information and data is based on our current knowledge. The data can be applied for calculations and as guidelines, are subject to typical manufacturing tolerances and are not guaranteed. Material properties as well as their tolerances can vary depending on type of application or use and are available from Getzner on request.

Further information can be found in VDI Guideline 2062 (Association of German Engineers) as well as in glossary. Further characteristic values on request.

⁴ Reference value: specific load 3.0 N/mm², shape factor 3