SYLODAMP_® SP1000

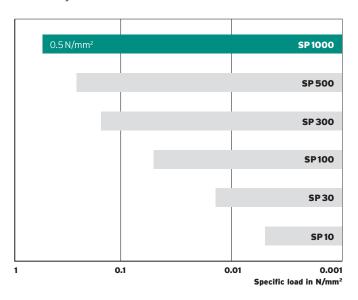
up to 40%

approx. 60%

DATA SHEET

Impact range of use

(dynamic loads) Load peaks


Product characteristics

Materiai			
Colour	traffic green		
Standard delivery dimension	Thickness: 12.5 mm / 25 mm		
	Mat: 1.5 m wide, 1.0 m long		
Other dimensions, punched and molde	d parts on request.		
Other dimensions, punched and molde Range of use	d parts on request. Compressive load Deformation		

up to 5 N/mm²

Standard Sylodamp® range

Static range of use

Material properties		Test methods	Comment
Mechanical loss factor	0.47	DIN 535131	temperature-, frequency-, specific load- and amplitude-dependent
Rebound resilience	15 %	EN ISO 83071	
Specific energy absorption	up to 84 mJ/mm²	Getzner Werkstoffe	at a thickness of 25 mm
Compression hardness ³	1.0 N/mm ²	EN ISO 8441	at 10 % linear compression, 1st load cycle
Compression set ²	<5%	EN ISO 1856	25% deformation, 23°C, 72h, 30 min after removal of load
Static shear modulus ³	1.9 N/mm²	DIN ISO 18271	at a pretension of 1.0 N/mm²
Dynamic shear modulus ³	5 N/mm²	DIN ISO 18271	at a pretension of 1.0 N/mm², 10 Hz
Min. tensile stress at rupture	3.2 N/mm ²	DIN EN ISO 527-3/5/5001	
Min. tensile elongation at rupture	160 %	DIN EN ISO 527-3/5/5001	
Abrasion ²	≤1,300 mm³	DIN ISO 46491	load 10 N
Coefficient of friction (steel)	0.5	EN ISO 82951	dry, static friction
Coefficient of friction (concrete)	0.7	EN ISO 82951	dry, static friction
Specific volume resistance	>10¹² Ω·cm	DIN EN 62631-3-11	dry
Thermal conductivity	0.11 W/mK	DIN EN 12667	
Temperature range ⁴	-30°C to 70°C		optimum damping range from 5 °C to 40 °C
Flammability	class E	EN ISO 11925-2	normal flammable, EN 13501-1

 $^{^{\}mbox{\tiny 1}}\mbox{Measurement}$ / evaluation in accordance with the relevant standard

²The measurement is performed on a density-dependent basis with differing test parameters

³ Values apply to shape factor 3 ⁴ Take account of heating caused by energy conversion

Load deflection curve

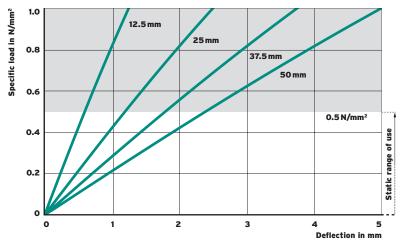


Fig. 1: Quasi-static load deflection curve for different bearing thicknesses

Quasi-static load deflection curve with a loading rate of 1% of the thickness of the unloaded sample per second.

Recording of the 1st load, with filtered starting range (in accordance with ISO 844), testing at room temperature.

Parameter: thickness of Sylodamp_®-bearing

Shape factor 3

Modulus of elasticity

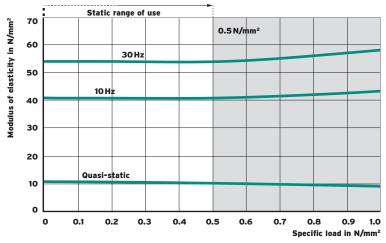


Fig. 2: Load dependency of the static and dynamic modulus of elasticity ${f r}$

Quasi-static modulus of elasticity as tangential modulus from the load deflection curve. Dynamic modulus of elasticity from sinusoidal excitation at a vibration velocity of $100\,\mathrm{dB_v}$ re. $5\cdot10^{-8}$ m/s (corresponding to a vibration amplitude of 0.22 mm at $10\,\mathrm{Hz}$ and $0.08\,\mathrm{mm}$ at $30\,\mathrm{Hz}$).

Measurement in accordance with DIN 53513

Parameter: frequency

Shape factor 3

Natural frequencies

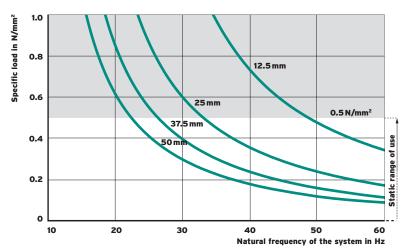


Fig. 3: Natural frequencies for different bearing thicknesses

Natural frequencies of a vibratory system with a single degree of freedom, consisting of a mass and an elastic bearing made of Sylodamp® SP 1000 on a rigid surface.

Parameter: thickness of the Sylodamp®-bearing

Shape factor 3

Energy absorption

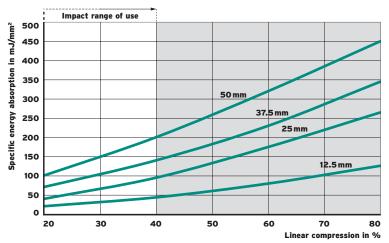


Fig. 4: Specific energy absorption for different bearing thicknesses

Specific energy absorption from an impact load at an impact speed of up to $5\,\text{m/s}$.

Drop impact test with a round, flat stamp, recording of the 1st load, testing at room temperature.

Parameter: thickness of the Sylodamp_®-bearing

Influence of the shape factor

The graphs show the material properties at different shape factors.

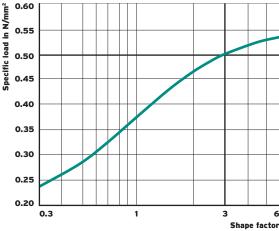


Fig. 5: Static range of use in relation to the shape factor

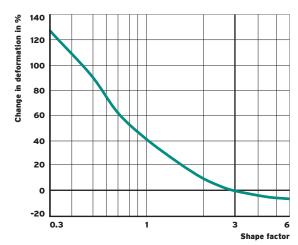


Fig. 6: Deflection⁵ at constant thickness in relation to the shape factor

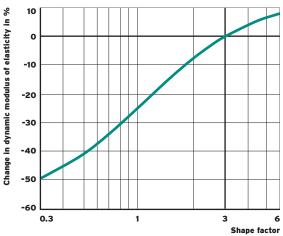


Fig. 7: Dynamic modulus of elasticity ⁵ at 10 Hz in relation to the shape factor

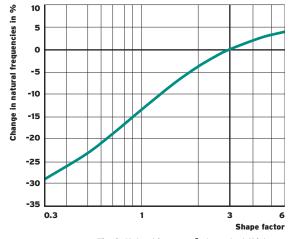


Fig. 8: Natural frequency⁵ at constant thickness in relation to the shape factor

Material properties can be determined using the online calculation program FreqCalc. The program can be accessed via www.getzner.com (registration necessary).

All information and data is based on our current knowledge. The data can be applied for calculations and as guidelines, are subject to typical manufacturing tolerances and are not guaranteed. Material properties as well as their tolerances can vary depending on type of application or use and are available from Getzner on request.

Further information can be found in VDI Guideline 2062 (Association of German Engineers) as well as in glossary. Further characteristic values on request.

⁵ Reference values: specific load 0.5 N/mm², shape factor 3