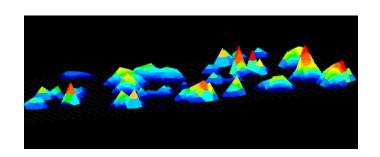
Sensor Sleeper

Complex questions of rail superstructure suddenly become very simple. A monitoring system capable of observing the ballast sleeper interface.

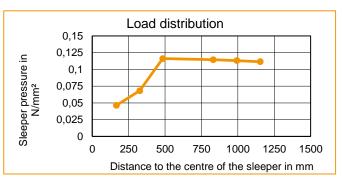
Sensor	Data	Application
D. II. (OI	5 .	
Ballast – Sleeper interface	Data generation	Conditional based monitoring
Pressure map	Cloud storage	Proof your rail superstructure
Ballast contact	Remote	•
areas	access	Safety monitoring
Load distribution	Network view	Track validation R&D

Sensor Sleeper

We have always wanted to understand the overall system, which is why we are taking the next logical step and merge our core competences of product and measurement technology.


Prototype

- Tamping same as before
- Normal sleeper installation
- No specific handling tools necessary


Pressure area map

- Measurement of contact areas
- Measurement Ballast-sleeper contact pressure
- Measurement of dynamic forces

System understanding

- Load distribution map
- Observation of bearing behaviour or capacity over time
- Input for predictive maintenance

